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ABSTRACT

This paper describes an automated air-traffic-management concept that has the potential for
significantly increasing the efficiency of traffic flows in high-density terminal areas. The concept's
implementation depends on techniques for controlling the landing time of all aircraft entering the
terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well
as those aircraft types that are conventionally equipped. The two major ground-based elements of the
system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing
times provided by the scheduler are uplinked to equipped aircraft and translated into the appropriate 4D
trajectory by the on-board flight-management system, The controller issues descent advisories to
unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations
have established that the concept provides an efficient method for controlling various mixes of
4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of
profiles flown with the aid of advisories have verified the ability to meet specified descent times with
prescribed accuracy.

1. INTRODUCTION

After years of research, automation of air traffic control (ATC) procedures remains a distant
goal. While much progress has been made in the processing and display of information for controllers,
the major decision and control functions involved in managing traffic continue to be done in the
traditional way by teams of controllers who work without significant computer assistance. This
situation contrasts sharply with the situation of the pilot of a modern aircraft who uses numerous
automated systems for guidance, control, and navigation, including automated flight-path management.

At first, problems in ATC automation often do not appear to be more difficult than typical aircraft
guidance and control problems that have been successfully solved. But-then, after some promising
initial successes, unforeseen problems surface and reach unmanageable complexity as more and more
practical constraints are included, leading to the eventual abandonment of the effort. Yet the need to
increase safety, capacity, and fuel efficiency, and to reduce controller workload in a period of rising
traf{ic density provides a continued impetus for developing practical solutions to ATC automation
problems, i

Much of the difficulty in designing automated ATC systems stems from the complex and ever-changing
air traffic environment. Whereas controllers usually can adapt to such an environment, automated
systems have so far lacked the flexibility to adapt to it. For example, automated systems must be able
to handle a range of aircraft types, from high-performance jets to low-performance, general-aviation
aircraft. Furthermore, the systems must allow future aircraft equipped with four-dimensional (4D},
flight-management systems to fly their optimized flight profiles while efficiently controlling aircraft
with conventional avionics (referred to as unequipped aircraft). Finally, the systems must provide an
intelligent interface so the decisions of the automated system can be supervised by the controller.

This paper describes an automated concept for traffic management in the terminal area that has the
potential for meeting the design objectives and constraints just discussed. The design evolved from a
series of studies in 4D guidance and ATC simulations conducted at NASA Ames Research Center during the
past 10 years. The viability of the concept hinges on techniques which accurately control the landing
times of all aircraft entering the terminal area, not just 4D-equipped aircraft. The advantage of a
system based on time control is that it provides a unified framework for automating flow control and for
scheduling and spacing all types of traffic. Furthermore, this time-based system is ideally suited to
exploit the time-control capabilities of future 4D-equipped aircraft, whose population in the traffic
mix is expected to increase steadily.

The paper begins with an overview of the concept, followed by a review of results from controller-
interactive simulations of an initial design. These simulations have shed light on the question of how
acceptable the various automated procedures and computer aids are to controllers and how suitable the
concept is for controlling a mix of aircraft (e.g., that are equipped and unequipped, high performance
and/or low performance), Finally, the design and the piloted-simulator evaluation will be described for
an algorithm for controlling the landing time of unequipped aircraft--a crucial element of the concept.

2, OVERVIEW OF TRAFFIC-MANAGEMENT SYSTEM

Fig. 1 shows the major elements of the terminal-area-traffic-management system that is being
studied at Ames Research Center. The two major ground-based elements of this system are primarily
embodied in two computer algorithms referred to as the scheduler and the 4D profile descent advisor.
The airborne elements are aircraft equipped with 4D flight-management systems and unequipped aircraft.

The scheduler generates the landing order and the conflict-free landing times for all aircraft,
both 4D-equipped and unequipped. Primary input to the scheduler is the list of arrivals and their
estimated arrival times at the entry point into the extended terminal area. Entry points, also known as
feeder fixes, generally are located near the end of cruise flight just prior to the descent point, which



LIST OF
ARRIVALS

SCHEDULER
LANDING ORDER

LANDING TIME SLOTS

CONTROLLER
INPUTS

4D DESCENT ADVISOR

TRAJECTORY
GENERATOR

ATC RADAR A/C
POSITIONS

i

CONTROLLER DISPLAY

DISPLAY OF DESCENT
PROFILE ADVISORIES

i

COMMUNICATIONS LINK

CONTROLLER ISSUES
ADVISORIES

WINDPROFILE

-GROUND-TO-AIR
DATA LINK

4D EQUIPPED A/C

ON-BOARD 4D FLIGHT
PATH MANAGEMENT
SYSTEM

AUTOPILOT EXECUTES
TRAJECTORY COMMANDS

]

UNEQUIPPED A/C

PILOT EXECUTES
ADVISORIES

DESIRED LANDING TIME ACCURACY: :20 sec LANDING TIME ACCURACY: =5 sec

Fig. 1. Terminal-area traffic management system.

is about 120 n.mi. from the destination runway for conventional jet-transport aircraft. The most
important factors considered by the scheduler in generating efficient landing times are the minimum
separation times between aircraft and the landing-order criterion, as exemplified by the
first-come-first-served rule. :

The minimum time separations between aircraft are derived from the minimum-distance separation
rules specified by the FAA and given in Table 1. These separation rules depend on aircraft weight class
(small, large, and heavy) and the 1andin% sequence., By combining the data in Table 1 with the known
speed profiles of each aircraft weight class along the common final-approach path, the matrix of minimum
time separation {Table 1) can be calculated. If two consecutive aircraft are 4D-equipped, the
interarrival times given in Table 1 are used directly for scheduling purposes. However, unequipped
aircraft, which cannot achieve specified landing times as accurately as 4D-equipped aircraft, are given
additional time buffers to prevent separation-distance violations. Further discussion of this subject
can be found in Ref. 1.

The scheduler is designed as a real-time expert system that provides for efficient interaction with
a human controller. The controller monitors the time assignments of the scheduler on a graphics
terminal and can override its ordering and time-assignment decisions by using a small, but flexible,
list of commands. For example, controllers can delay traffi- at the feeder fixes or increase the time
separation if delays are being encountered in the terminal area. Also, they can overrule the built-in
:irst-c?me-first-served rule to give landing time priority to a missed approach or emergency aircraft
Ref, 2).

The landing times generated by the scheduler are handled in one of two ways depending on whether
the times apply to a 4D-equipped or unequipped aircraft. The times are assumed to be uplinked auto-
matically to equipped afrcraft where the on-board 4D flight-management system translates time commands
into the appropriate 4D-trajectory commands. The autopilot then fiies the aircraft according to these
commands, achieving a landing-time accuracy of about +5 sec (Refs. 3,4).

Table 1, Distance- and time-separation rules

Trailing Aircraft

Minimum separation distance (n.m) Minimum separation time (sec)

Aircraft Type Small Large Heavy Small Large Heavy
First Small 3 3 3 98 74 74
to Large 4 3 3 138 74 74
land Heavy 6 5 4 167 114 94




landing times for the unequipped aircraft constitute the primary input to the 40 profile
descegzeadvisorgwhose algorithms residgein the ATC host computer or in a minicomputer linked to the
host. By using ATC radar-tracking data, wind profiles and aircraft performance models, the descent
advisor generates simplified 40 trajectory commands which are displayed on the arrival controller’s
monitor as brief controller advisories. The arrival controller then issues the advisories to the pilot
of the unequipped aircraft. When the pilot properly executes these advisories, the unequipped aircraft
will arrive at the designated time-control point within acceptable error bounds. The arrival-time
accuracy of the unequipped afrcraft should be a reasonably small fraction of the minimum interaircraft
arrival times given in Table 1 in order that the benefits of a time-based system be fully realized.
This requirement led to the choice of +20 sec as the desired accuracy.

3. ATC SIMULATIONS OF MIXED TRAFFIC

The terminal-area traffic-management concept described in the previous section has been evaluated
and its design refined in a series of real-time, controller-interactive, ATC simulations. For this
purpose an extensive set of software tools and simulation techniques were developed to permit the study
of time-based ATC concepts under reasonably realistic conditions. Special features incorporated in the
simulator include algorithms for on-board, 4D-guidance and ground-based, speed~advisory systems and
interactive scheduling logic with associated graphics displays (Ref. 5).

Examples of critical issues that have been addressed in simulations are the following: 1) Effect
of percentage of 4D-equipped aircraft in the traffic mix on controller workload and landing rate; 2}
effectiveness of speed advisories; 3) controller procedures for handling 4D-equipped aircraft; and 4)
rescheduling of missed-approach aircraft. A complete discussion of simulation results can be found in
Refs. 2 and 6. The simulation scenario and controller procedures will briefly be described first.

3.1 Scenario and Controller Procedures

The terminal area simulated in these studies is based on the John F. Kennedy (JFK) International
Airport in New York. The route structure and runway configuration together with information used by the
controllers are shown in Fig. 2. Two routes, E1lis from the north and Sates from the south, are
high-altitude routes flown by large or heavy jet-transport aircraft. Both 4D-equipped and unequipped
aircraft on these routes fly profile-descent, fuel-conservative procedures, providing a mix of the same
speed class on the same route. Low-performance (general-aviation) aircraft fly the Deerpark route from
the east, but use the same final approach and land on the same runway as the jet traffic. The Deerpark
traffic fs unequipped and always constitutes 25% of the traffic mix.

In these simulations aircraft entered the extended terminal area at the feeder fix points flying at
cruise speed and altitude. The total distance to be flown by high-performance jets was 120 n.mi. and
that flown by low-performance aircraft was 60 n.mi. Two air traffic controller positions were estab-

lished, arrival control and final control. The arrival controller controlled aircraft from all three
feeder fixes and transferred traffic to the final controller at approximately 30 n.mi. from touchdown.

13:27:12

ID TYPE RT STA DY CAS
R1 4 SA 3700 0

It  H4 SA 3824 0
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J ) EL 4305 35 260
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A2 HU EL 4715 —80 230

E2 U SA 4929 120 290°
M2 HU EL 5103 100 280

G2 H4 SA 5247 2849

DEERPARK

Fig. 2. Controller display showing route structure and flight-data table.



Control procedures differed for 40-equipped and -unequipped aircraft. Controllers were instructed
to monitor the progress of 4D-equipped aircraft after the time assignment had been established, and to
override the automated scheduler only if necessary to ensure safe separation. Any 4D-equipped aircraft
could also be controlled by conventional methods and treated as unequipped. A]ternagively, a 4D-
equipped aircraft which had been taken off its 4D route and time schedule could be given a waypoint to
recapture a 4D route and be given a revised landing time. Unequipped aircraft were considered to be
navigating in the conventional manner via very-high-frequency omnidirectional range procedures, with
altitude clearances, radar vectors, and speed control.

A typical arrival controller display is shown in fig. 2. The map portion of the display provides a
horizontal display of traffic in the terminal area. Each aircraft position is shown by a triangular
symbol., A block of data next to each aircraft (not shown here for simplicity) provides aircraft
identification, type, altitude, and speed. The information in the flight data table in the upper-left
portion of the display is generated by the scheduler and speed advisory system. At the top of the
table, the time is shown in hours, minutes, and seconds. The first column shows the aircraft identifi-
cation (ID), such as "R1.* The second column provides aircraft type (TYPE) which includes 1) weight
category (small (S), large (blank), or heavy (H)); and 2) 4D status (equipped (4) or unequipped (U)).
The third column provides the assigned route (RT). The fourth column is the scheduled time of arrival
(STA) at the runway in minutes and seconds. Thus, Rl is scheduled to touch down at 13:37:00. Note that
touchdown times are shown for all aircraft, whether they are 4D-equipped or unequipped. For the 4D-
equipped aircraft, these times are assigned by the ground-based computer system, For the unequipped
aircraft, the time assignments are not given to the pilot directly; rather, the controller uses speed
advisories and the known-to-be-on-time positions of 4D-equipped aircraft as they traverse their routes
to achieve touchdown at the times indicated. The next column is the expected delay (DY) at touchdown in
seconds. In an effort to simulate the characteristics of the current en route ATC system, which does
not provide accurate time control, the unequipped aircraft were assumed to depart their feeder fixes
with an initial time error uniformly distributed in the range +120 sec. This amount is considered
rather large even by today's controller experience and certainly will be less with a future en route
metering system. Thus, if an aircraft departed the feeder fix 90 sec late, a OY of 90 would be
displayed, indicating that unless controller action was taken, the aircraft would touch down 90 sec
late, Early arrivals were indicated by a negative value in the DY column, and late arrivals by a
positive value. A1l 4D-equipped aircraft departed the feeder fix at the scheduled departure time. In
flight tests, it has been shown that 4D-equipped aircraft can meet time schedules within +5 sec; hence,
these small errors were neglected (Refs. 3,7).

The data in the last column give the calibrated airspeeds (CAS) in knots, computed by the speed
advisory system, These speed advisories, which are based on current aircraft position, altitude, and
wind profile, help the controller to correct the unequipped aircraft's time errors shown in the DY
column. The speed advisory is recomputed once per minute using the current aircraft position as long as
the delay remains larger than 20 sec. This feature gives the arrival controller the freedom to issue
the advisory at a convenient time.

The speed advisory incorporated in the ATC simulation is a simplified early version of the more
recently developed descent-advisor algorithm, which is detailed in a later section. It will be seen
that the new algorithm also provides top-of-descent-point and Mach number advisories in addition to the
CAS advisory. However, for investigating controller response and other ATC-related issues the speed
advisory system used provides a sufficiently realistic substitute.

Finally, aircraft below the dotted line in Fig. 2 are aircraft which will enter the simulated
control region at their respective feeder fixes within the next 5 min. The feeder-fix start times are
given in minutes and seconds.

3.2 Summary of Results

The traffic mixes examined in simulation runs, each lasting 1.5 hr, were 0%, 25%, and 50% 4D-
equipped aircraft. For each mix, the total arrival rate from the three approach routes was selected to
generate a full landing schedule with no excess time gaps between touchdown. This condition required
arrival rates that varied from 30 aircraft/hr for the 0% or baseline mix to 33 aircraft/hr for the 50%
mix. The variation is due to the time separation buffers added for the unequipped aircraft. All runs
included the +120-sec feeder-fix departure errors for unequipped aircraft.

Controllers rated all mixes as having acceptable workload, but considered the 25% mix without speed
advisories the most difficylt to control. This result was probably related to the controller procedures
adopted for this experiment of not disrupting the planned 4D paths of the equipped aircraft unless it
was necessary for safety. As a consequence, the final controller occasionally vectored an unequipped
aircraft to control its distance spacing from an equipped aircraft when he would have preferred under
the circumstances to vector the equipped aircraft. One solution to this problem that will be examined
in future simulations is a relaxation of the "do not disrupt® rule, Then, after vectoring an equipped
aitrcraft, the controller would assign a new 4D route and landing time to that aircraft, Some experience
with this approach was recently obtained in handling missed approaches of equipped aircraft (Ref. 2).

Controllers regarded the baseline mix of 0X as reasonable with respect to control difficulty, but
not because of lightened workload. Rather it was the most familiar mode of operation. The controllers
regarded the 50% mix as easiest to control.

Under all mix conditions, controllers found the landing order provided by the flight-data table in
Fig. 2 to be helpful and generally accepted the suggested ordering. But they did not make use of the
numerical landing-time data.

Further insight into the simulation results can be obtained by examining the composite plot of
‘aircraft ground tracks generated during a 1.5 hr simulation run. Such a plot is shown in Fig. 3a for
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Fig. 3. Composite trajectories from ATC simulation.

the 25% mix without speed advisories. In the arrival sector, from the feeder fixes to the hand-of f
points, the flightpaths are largely undisturbed, indicating that the arrival controller acted primarily
as a traffic monitor. After the hand-off points, the flightpaths spread into the broad envelope which
characterizes manual vectoring, This spreading is the result of the final controller issuing heading
vectors that cause unequipped aircraft merging from the three routes to be properly spaced on final
approach. Although the arrival controller had available the scheduled landing times for the unequipped
traffic, he could not use this information to correct spacing errors before the hand-off point.
Evident‘y, aircraft are still too far from the merge point for the arrival controller to anticipate
future spacing errors. As a result, control difficulty and workload were unevenly distributed between

the two control positions, with the final control position requiring higher skill and greater work load
than the approach control position.

A composite plot for the 25%-mix condition, in which speed advisories were used, is shown in Fig.
3b. The advisories were issued by the approach controller shortly after unequipped aircraft with time
errors exceeding 20 sec departed the feeder fixes. Typically, only one advisory was issued per
aircraft. The unequipped traffic was handed off to the final controller with significantly reduced time
errors. As a consequence, the final controller needed to make only minor adjustments in the flightpaths
to achieve the desired spacing. The resulting improvement in the traffic flow manifests itself as a
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reduction in the spread of flightpaths along all three routes. Furthermore, controllers commented that
speed advisories resulted in less bunching of traffic and fewer “"ties” in the merging area. Traffic
seemed to blend together smoothly and required fewer vectors, resulting in reduced complexity of control.

The 50% mix with speed advisories was rated by controllers as providing the most desirable control
environment of all conditions evaluated. The controllers commented that it was easy to fit the
unequipped afrcraft into their planned time slots by vectoring or speed control in the final control
sector. One controller stated that he could work and stay on top of the traffic without being
overtaxed. These favorable controller evaluations are reflected in the well-ordered and narrowly
distributed composite-trajectory plots (Fig 3c) obtained for this simulation run.

In conclusion, the procedures, computer assists, and information displays used in these simulations
established a workable baseline configuration for efficiently controlling a mix of 4D-equipped and
unequipped aircraft in a time-based environment. :

4. DESIGN AND SIMULATION OF 4D-PROFILE-DESCENT ADVISOR

The following sections present the theory of design and the results of a piloted simulation of the
descent advisor algorithm. The primary topics covered in the discussion of the design include selection
of descent procedures, derivation of the aircraft equations of motion, the method of numerical
integration, and an example output from the computer implementation of the algorithm,

4.1 Selection of Descent Profiles

The trajectories generated by the descent-advisor algorithm are based on models of fuel
conservative procedures used in airline operations. In such procedures the pilot first selects the
point of descent usin? 3 simple rule of thumb to estimate the idle-thrust descent distance. A rule
frequently used by pilots assumes 300-ft altitude loss/n.mi. Choosing the point of descent so as to
minimize level flight at low altitude is probably the pilot's most important decision for optimizing
fuel efficiency. At the point of descent, the pilot reduces thrust approximately to idle and at the
same time commands a pitch-down attitude so as to hold Mach number fixed at the cruise value. Thrust
may be kept slightly above the idle position if there is a requirement not to exceed a descent-rate
Timit, typically 3000 ft/min. During this constant Mach descent, CAS will increase steadily. When CAS
has climbed to a desired value the pilot ceases holding the Mach number and begins tracking the desired
CAS through appropriate adjustments to the pitch attitude. As the aircraft approaches an altitude of
10,000 ft, the pilot reduces the descent rate briefly to decelerate to 250 knots calibrated airspeed
(KCAS) as required by ATC regulation. If the initial descent point had been selected properly, the
aircraft will be 30 n.mi. from touchdown at the end of the deceleration and the pilot will resume the
descent into the terminal area.

The primary function of the descent-advisor algorithm is to select the speed profile that achieves
the arrival time specified by the scheduler. A secondary function of the advisor is to provide an
accurate estimate of the point of descent to optimize fuel efficiency. Later it will be seen that the
algorithm accomplishes both functions in a unified computational procedure.

The algorithm selects the speed profile with the help of a parameter, o , which determines a Mach
number and CAS that falls within the speed envelope of the aircraft as follows:

M= Moin t olMpay - Myp) 3 0co0 <l (1)

Veas = Vuin * °(Vmax = Vmin) (2)
The family of speed profiles generated by Eqs. (1) and (2) are superimposed in Fig. 4 upon the speed
envelope of a 727 aircraft. Note that the maximum-speed boundary contains a corner at 25,000 ft where
400 MACH =078 44
;i 0.82
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Fig. 4. Speed profiles for time control.
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the maximum Mach number and maximum CAS boundaries intersect. The family of speed profiles generated by
£gs. (1) and (2) converges into this corner as o approaches 1, thereby covering the full-speed
envelope of the aircraft.

The relationship between the parameter, o , and the arrival time at the 30 n.mi. from touchdown
point fs not amenable to a closed-form solution, since there are complex aerodynamic, propulsion, and
atmospheric models embedded in the relationships. Thus, a procedure that computes o iteratively has
been developed. Initially, the procedure calculates the minimum and maximum.arrival times by
setting o to one and zero, respectively. If the specified time falls within the feasible time range,
1terat?on on o by a directed trial and error technique is begun and continues until the arrival-time
error falls within acceptable bounds (for example, 2 sec). Experience has shown that five iterations
are generally sufficient to achieve a 2-sec accuracy. The next section will describe the equations of
motion that must be integrated for each iteration of o. (Ref. 4),

For reasons of brevity, the speed-profile selection process just described has been considerably
simplified compared to the method actually implemented in the computer algorithm. The computer
algorithm includes a more complicated mapping of o into profiles that provides an appropriate
transition from the cruise Mach number to the descent Mach number. It also eliminates constant Mach
segments in the speed profile if the descent CAS is less than the cruise CAS.

4,2 Equations of Motion

Numerical integration of a simplified set of point-mass equations of motion has been adopted as the
basic method for calculating the descent trajectory and arrival time corresponding to a given speed
profile. This method is computationally intensive, but it is more flexible and more accurate than
schemes that depend on analytical approximations or precomputations of trajectories. Here, no restric-
tive assumptions on pilot procedures, wind profiles, or aircraft performance models need be made in
calculating trajectories. Potentially, it would even be possible to include the preferred procedures of
individual airlines in the calculations of the descent trajectories.

To begin with, it is assumed that the afrcraft is flying along a known horizontal path in space.
Therefore, the problem simplifies to finding the vertical profile along the known horizontal path.
Furthermore, the horizontal path is assumed to be a straight line, though it is easily modified to
include curved segments. Using an Earth-fixed coordinate system with x as the horizontal axis
pointing in the flight direction and h as the upward-pointing vertical axis, the components of
inertial velocity u and w that must be integrated are

%% zu=Vpcosy, +u = Fy (3)
dh _ . .
Y=Y siny, = Fp (4)

where V; 1is the true airspeed, Y, the aerodynamic flightpath angle and u, the horizontal
component of wind. The airspeed acceleration is calculated from the following equations:

vy _(1-0) du

W
r il Sl AL PO (%)
dya
mVT&—-'L-mgcosv‘-O (6)

where T s thrust, D 1is drag, L s 1ift, m is aircraft mass, and g is acceleration of
gravity. The approximation in Eq. (6) implies that accelerations normal to the flightpath are
considered to have negligible effect on trajectory modeling for this application., This assumption is
valid for the low-g maneuvers encountered in commercial transport operations. The value of 1ift
computed by solving the algebraic Eq. (6) couples into Eq. (5) through the dependence of drag on 1ift.
The last term in Eq. (5) reflects the influence of a time-dependent wind, also known as wind shear, on
the airspeed acceleration. On the time and distance scale of a descent trajectory it is reasonable to
assume that wind shear is only encountered during changes in altitude, implying the relationship
u,(h). The drag coefficient involved in calculating the drag force was represented by seven
fourth-order polynomial functions, each representing a different Mach number in small increments from
Mach 0.6 to 0.9. Both tables and polynomial functions were used to model the thrust and the fuel flow
as a function of engine-pressure ratio (EPR), Mach number, temperature, and pressure. Idle thrust and
fuel flow were stored in separate tables indexed by Mach number and altitude. Such aircraft performance
models must be developed for all major aircraft types that operate into the terminal area where the
descent advisor is used to provide time control.

Another important quantity that the descent advisor uses in computing trajectories is aircraft
mass. An adequate estimate of mass can be calculated from a knowledge of aircraft type, point of
origin, and takeoff mass. Such information is generally contained in aircraft flight plans or can be
obtained from the pilot at take-off time.

4.3 Constant Mach/Constant CAS Segments

In modeling the speed profile it was shown that pilots maintain either a constant Mach number or a
constant CAS during the majority of an aircraft's descent into the terminal area. This assumption can



be used to reduce the differential equation for airspeed, Eq. (5), to an algebraic relation. Conse-
quently, only the position rates, Eq. (3) and (4), need to be numerically integrated in such segments,

Considering first the constant Mach segment, one can write from the definition of Mach number
Vp = a(h)M (7

where a is the speed of sound, which is a function of altitude. Differentiating this equation with
respect to time and using the fact that M 1{s constant, ylelds

dv
T da dh da
T " M dh @ M ah yavr (8)

where use was made of Eq. (4) and sin Y, > ¥,. After replacing the left side of Eq. (5) with the right
side of Eq. (8) and calculating the wind shear term in Eq. (8) as du,/dt = (du,/dh)Y,V;, an
explicit expression for Y, 1is obtained as

La-0) 1 )

'al ] du
da W
("d‘ﬁ"T’“W"T)

M constant

where the small angle approximation, sin Y, = Y, has been used. For a constant Mach segment at a
known altitude, all quantities needed to compute Y, are either known or measurable. The derivative
da/dh must be computed by differentiation of the speed of sound function, If this function is obtained
from a table of the standard atmosphere, the derivative can be precomputed numerically, curve-fitted for
the range of altitudes of interest, and permanently stored for use by the program. However, the most
accurate results will be obtained by calculating the speed of sound function from the temperature
profile measured at the time and location of the descent. Calculation of the wind shear term,

du,/dh, depends on knowledge of the altitude-dependent wind profile in the descent airspace, The
descent advisor must compute the derivative numerically and update the derivative whenever the wind
profile is updated. Thus, each terminal area where the descent advisor is used will have to provide for
measuring the wind profile at regular intervals during each day. Several technical means exist for
measuring the wind profile including the use of conventional weather balloons. (Ref. 8).

Considering next the constant CAS segment, an expression for Y, can be derived in a similar
manner. One begins by writing the expression relating true airspeed and CAS

Vi = VT(VCAS'h) (10)

The time derivative of Eq. (10) yields a relation analogous to that for the constant Mach case

dvy . dvT(vCAS'z)

i i LA ()

An explicit expression for Vr(Veas ,h) in terms of V » the speed of sound, a, and the atmo-
spheric pressure, p, can be derived from expressions ?gbnd in standard textbooks on aerodynamics and
flight mechanics (Ref. 9)

Yair Yair-1
P Y -1° Yair- Y
vpea [—2 _SL(;‘_"_E_&V‘E’AS”)airl_I 1) (12)
Yatr- 1|\ P Yair  Psi

where Py and p, are sea-level values of atmospheric pressure and air density, respectively,

and Y, s the specific heat of air. Since atmospheric pressure, p, and speed of sound, a, are
known functions of altitude, h, the expression for Vy in Eq. 12 1s in the form required by Eq.
(10). However, the complexity of Eq. (12) makes it infeasible to compute the derivative of V; with
respect to h analytically for use in £q. (11). Therefore, the derivative is computed by a standard
numerical technique.

The expression for the flightpath angle in the constant CAS segment can now be obtained by
combining Eq. (§) and (11)

T-D 1

Y - (13)

‘ICAS constant ( " ) v vy v e du, v
Tah *9*a@ Vv

The last question to be settled in computing Yy 1is how to determine the thrust, T, in the two
expressions for the flightpath angle. In a conventionally equipped aircraft pilots hold thrust more or



less constant during descent by keeping the throttlie levers at their idle.position. However, if the
idle throttle position results in an excessive descent rate during a portion of a descent, the pilot
will adjust the throttles to maintain the descent rate at a specified limit. Since both specified-
thrust and specified-descent-rate segments can occur under appropriate conditions, both have been
implemented and the choice between them is determined by the constraints of the descent. If the descent
rate, h, is specified, Y, is computed from the relation Y, = h/V; and Eq. (9) and (13) are

solved for the unknown thrust. It should be noted here that a pilot cannot easily fly a commanded value
of Y, directly because no readout of this quantity is provided on conventional cockpit instruments.

It is of interest to evaluate the effect of the windshear term, (du,/dh)-vT on the descent
profile. For example, a decreasing tail wind (du,/dh > 0) during descent results in a Y, that is
shallower than that for a constant wind. Thus, in this case, the descent trajectory experiences an
expansion of the distance to descend from cruise altitude. The opposite effect occurs for a decreasing
head wind, For a typical wind shear of 2 knots/1000 ft, the calculated distance to descend from 35,000
ft to sea level would be in error by 5 n.mi. if this term were neglected.

4.4 Integration Algorithm

A fourth-order Runge-Kutta scheme was adopted for the numerical integration of the trajectory
equations (Ref. 10). This scheme gives accurate results with relatively large step sizes and also does
not require evaluating derivatives of the complex functions appearing on the right-hand sides of the
equations being integrated. The latter property simplifies the integration of functions specified in
tabular form. For the constant Mach number and constant CAS segments, which constitute the majority of
the descent, only Egs. (3) and (4) need to be integrated, as previously explained. Letting At
represent the time increment, then the states (Xxy1, hiep ) at the (i+1)St  time increment are
determined from four sets of sequentially computed state increments as follows:

byxy = (At)Fl(xi,h1,t1) (14)

Alhi = (At)FZ(Xi'hi’ti) (15)
1 1 1

BoXs = (At)Fl(x1 + 5 Axpohy + 5 ah b+ 5 at) (16)
1 1 1

aohy = (At)Fz(xi + 5 8yXq,hy + 5 ahot 4 5 at) (17)
- 1 1 1

Xy = (At)Fl(xi +5 Azxi,h1 +3 AZhi'ti +3 at) (18)

dahs = (At)F, (x; + Loaxin +34 an t, +4 at) (19)
3 2V T 2 TR T 2 T2t T 2

Baxg = (At)Fl(xi + AgXgohy + agh. by 4 at) (20)

bahs = (At)FZ(xi + B3Xgahy 4+ aghyty 4 at) (21)

Xjp1 = X3 * % (Bgxg + 28,%; + 283%5 + By%,) (22)

- 1
hieg = hy + g (80 + 2850, + 283hy + 84h5) (23)

At the top and bottom of the descents rapid changes in speed occur, and neither Mach number nor CAS
remain constant. During these acceleration or deceleration intervals it is also necessary to integrate
Eq. (5) representing rate of change of airspeed. The incremental Eqs. (14) through (23) were augmented
appropriately to integrate this equation,
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The integration time increment, At, was experimentally selected to be as large as possible to
consistently give accurate and numerically stable results. The optimum step sizes were 60 sec for the
constant Mach/constant CAS segments and 30 sec for the acceleration/deceleration segments.

4.5 Example Descent Profile

This section gives an example of a complete descent profile generated by the program. The aircraft
model used is that of a 727-200 weighing 140,000 1b at the start point. Initially the aircraft is
cruising at Mach 0.8 and 35,000 ft and is 150 n.mi. from touchdown. The time-control point is located
30 n.mi. from touchdown at 10,000-ft altitude. At this point the aircraft must have completed its
deceleration to 250 knots. A descent time of 985 sec, measured from the 150 n.mi, starting point to the
end of the deceleration, is specified. The wind is assumed to be zero throughout the descent.

The synthesized trajectory consists of four segments whose parameters are given in Table 2. The
first segment is a level-flight segment leading from the starting point to the point of descent at 98
n.mi. from touchdown. The second segment is a Mach 0.8 descent with EPR, which controls thrust, set to
near idle (approximately 1). The third segment begins at 27,603 ft where Mach 0.8 corresponds to a CAS
of 320 knots. In this constant CAS segment, thrust is held at idle. The fourth segment consists of
deceleration from 320 to 250 knots at 10,000 ft. The last line of data in the fourth segment shows that
the time and the distance to touchdown closely match the specified values. Various other parameters
relating to the trajectory synthesis such as the number of integration steps in each segment and the
fuel consumed are also included in the table.

In addition to achieving the specified descent time, the synthesized trajectory is also relatively
fuel efficient, requiring only 1208 1b for all four segments. Good fuel efficiency is assured by the
combined benefits of an idle-thrust descent and the choice of descent point that results in the
termination of the trajectory exactly at the specified altitude and distance from touchdown.

4.6 Piloted Simulator Evaluation: Experimental Setup

An evaluation of the descent advisor concept was conducted on a so-called phase II simulator of a
727-200 aircraft located in the Man-Vehicle Systems Research Facility at Ames Research Center. This

Table 2. Example of synthesized profile

Time Dist, Altitude Vi Vear Thrust  Fuel Alt Rate
Comments (sec) (n. mi.) (ft) Mach (knots) (knots) EPR (1bs) (bs) (ft/min)
Cruise, two integration steps
Step size = 500 sec 0.0 150.0 35000 0.80 461 272 1.95 9824 0 0
Capture = 98.4 n. mi 402.5 98.4 35000 0.80 461 272 1.95 9824 867 0
Constant Mach, four integration steps
Step size = 60 sec 402.5 98.4 35000 0.80 461 272 1.06 1597 867 0
Mach, constant 462.5 90.6 32000 0.80 467 291 1.09 2173 906 -3000
Vertical speed, constant | 522.5 82.8 29000 0.80 473 310 1.13 2945 954 -3000
Capture = 320 KCAS 550.4 79.1 27603 0.80 476 319 1.14 3363 981 -3000
Constant CAS, nine integration steps
Step size = 60 sec 550.4 79.1 27603 0.80 476 319 1.00 73 981 -3000
CAS, constant 610.4 71.4 24665 0.76 455 319 1.00 -148 1008 -2912
EPR, constant 670.4 63.9 21781 0.72 436 319 1,00 -301 1035 -2854
Capture = 10,000 ft. alt.| 730.4 56.8 18952 0.68 418 319 1,00 -377 1063 -2807
790.4 50.0 16172 0.64 402 319 1,00 -353 1092 -2752
850.4 43.4 13448 0.61 386 319 1.00 -316 1124 -2693
910.4 37.1 10785 0.58 372 319 1.00 -297 1160 -2637
928.4 35.2 9999 0.58 367 319 1.00 -299 1172 -2621
Bottom-of -Descent Deceleration, three integration steps
Step size = 30 sec 928.4 35.2 9999 0.58 367 319 1.00 -299 1172 0
Mach, CAS not constant 958.4 32.3 9999 0.51 324 281 1.00 -125 1191 0
Vertical speed, constant | 986.5 30.0 9999 0.45 288 249 1.00 17 1208 0
EPR, constant
Capture = 250 KCAS
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simulator, manufactured by Singer-Link, is widely used by airlines for crew training. The simulator is

equipped with a six-degree-of-freedom motion system and a night/dusk vision system, Computgr-generated

fmagery of the night or dusk scene is displayed in front of the cockpit windows by four projectors which
give a wide, high-resolution field of view to the pilot and copilot.

Each simulated flight consisted of a straight-in approach beginning 150 n.mi. from the runway
threshold at an altitude of 35,000 ft and a speed of Mach 0.8. In all flights a tafl wind of 70 knots
at 35,000 ft decreasing linearily to zero at the runway was simulated. Simulated weather conditions
consisted of a visibility ceiling of 1000 ft above the runway, with tops at 5000 ft and light turbulence
at all altitudes. P1lots were briefed on wind and weather conditions prior to the simulation runs.

Test subjects were three current 727 pilots, one each from three major U.S. airlines. Initially,
each pilot was asked to fly his own airline-recommended descent profile, which will be referred to as
the baseline profile. The three pilots chose essentially the same baseline profile, consisting of a
Mach-0,8/280-KCAS descent. Each pilot also estimated his top-of-descent point using the 300 ft/mi rule
of thumb mentioned earlier. Range to touchdown was provided by a standard cockpit readout of distance
measuring equipment (DME) range from a station located at the destination airport, A1l baseline
profiles were flown without ATC advisories.

After completing the baseline descents, the pilots flew three types of controller-assisted descents
referred as nominal, slow, and fast with speed profiles of Mach 0.8/320 KCAS, 230 KCAS, and Mach
0.85/350 KCAS, respectively. Note that the slow and fast profiles follow the limits of the speed
envelope for this afrcraft (Fig. 4).

Before flying these profiles in the simulator, pilots received brief, written instructions on
operational techniques to be used:

1) Thrust Management. - The flight idle position is to be used in tracking the speed profile
unless the descent rate exceeds 3000 ft/min. If such is the case, add only sufficient thrust
to keep the descent rate from exceeding 3000 ft/min.

2) Deceleration at the Top (Slow Profile). - First, reduce thrust to idle at the descent-
procedure start point; second, maintain level flight (zero descent rate) while decelerating to
the specified CAS; and third, begin the descent as the specified CAS is approached.

3) Acceleration at the Top (Fast Profile). - At the descent-procedure start point (the top of
descent point In this case) initiate a pitch-down maneuver to achieve a 3000-ft/min descent
rate. Then, maintain cruise thrust while accelerating; as the specified Mach number is
approached, reduce thrust according to 1).

4) Deceleration at the Bottom of Descent (Nominal and Fast Profiles). - As the aircraft
approaches 10,000-ft altitude, decelerate to 250 KCAS in level flight and with thrust still at
idle; resume descent at the 30 n.mi. to the touchdown point.

The descent advisories were issued during the simulation by a pseudo-controller located at the
engineer's position in the cockpit. The advisories were issued only once approximately a minute before
the start point of the procedures and specified the DME range of the start point and the speed profile.
Calculated off-line by the previously described computer program, the advisories typically contained the
fo}lowing 1nformation, “Begin descent procedure at 108 DME; follow a Mach 0.8/320 speed profile using
idle thrust.

Each type of controller-assisted descent was flown four to six times. These few simulation runs
are believed to provide sufficient information to determine the feasibility of the concept. However,
they are too few in number to warrant extensive statistical analysis of the results.

4.7 Discussion of Results

Errors in the predicted time of descent measured at the time-control point were the principal
criterion for evaluating the effectiveness of the controller-assisted (and computer-generated) profile
descent advisories. Also the instantaneous-altitude and time-tracking errors as wel? as the fuel
efficiency of the descents provide important measures of effectiveness. Finally, the pilots
participatin? in the simulation were asked to comment on the value and acceptability of the advisories.
This simulation focused on isolating errors attributable to pilot technique. Errors caused by other
sources such as wind and aircraft-model uncertainties can be determined more efficiently by analysis and
fast-time simulation, and therefore are not addressed here.

The results for the varfous types of descents are given in Figs. 5 through 8 as composite plots of
time and altitude versus range to touchdown. Figure 5 shows the composite plots for four baseline
descents. Although all pilots presumably used the same procedure to fly their profiles, the data
revealed significant time and altitude variations between profiles, reflecting differences in individual
pilot technique. At 30 n.mi. from touchdown time-control point, the variability in time is 196 sec.
Here, variability is defined as the difference between the earliest and latest arrival time for all
profiles of a particular type and s used as a conservative substitute for standard deviation.

Since the typical landing-time interval between aircraft is approximately 100 sec (Table 1), a
196-sec error range implies difficulties in achieving efficient traffic flow at terminal areas where two
or more streams of aircraft flying unaided profile descents are merged. Thus, unaided aircraft assigned
conflict-free time slots at the top of descent by an en-route metering system would accumulate
unacceptable time errors during the descent, and would therefore not be conflict free at the merge
point. As a result, the controller would frequently have to interrupt the profile descents to resolve
potential conflicts and ensure efficient traffic flow. Such problems have indeed been experienced in
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ATC simulations of unaided profile descents (Ref. 11) and are also evident in the results of the ATC
simylations discussed earlier,

As shown in the composite plots in Fig. 6, the time variability of the nominal profile descents,
flown with the aid of the descent advisories, is reduced from 196 sec for the baseline descents to only
35 sec. Furthermore, the scatter in the altitude profiles is significantly reduced throughout the
descent. The predicted trajectory with an arrival time of 893 sec at 30 n.mi. is also plotted in Fig.
6, but is difficult to distinguish from the simulated trajectories because of crowding of the plots.
These improvements in accuracy clearly demonstrate the advantage of using the advisories, With the
top-of-descent point specified, pilots could concentrate on tracking the speed profile and needed to pay
little attention to thrust and altitude management. Without advisories, pilots often cross-check
altitude and range and then readjust the thrust so as to minimize anticipated altitude errors at the
bottom of the descent. With the advisories, pilots could maintain thrust at idle throughout, and yet be
confident that the altitude target at 30 n.mi. would be achieved.

As seen in the composite plots, Figs. 7 and 8, the time variability and the aititude scatter of the
fast and slow profiles are even lower than those of the nominal profile. In fact, the slow profiles
have the unysually low variability of only 7 sec, which one would expect to obtain only from a
closed-loop 4D guidance system. This high accuracy is probably related to the fact that they are
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flown at a constant CAS and
simpler to fly than the other two types of profiles. The slow pro;:l:: :::1re?y St o, e ince

be
do not contain a constant Mach segment. Furthermore, they Cﬂﬂuo do during portions of their descent.
they never exceed the 3,000-ft/min descent rate oo e Othe;e:t at the bogtgm of the descent. One can

ication 1s the absence of a deceleration seg
22%'1'55.’372.1'&3; gesults that procedural complexity has a strong impact on time-control accuracy and

should be carefully cons idered in choosing the descent profiles.

Time accuracy and fuel efficiency of the predicted and simulated profiles at the 30 n.mi. point are
summarized in Table 3. By comparing the first and second columns it can be seen that a]] predicted
times fall within the corresponding time ranges of the simulated profiles. This comparison indicates
that there s no significant bias between the predicted and simylated data.

The averge fuel-consumption data given in Table 3 show that the slow profile is the most fuel
efficient and the fast profile the least fuel efficient. The nominal profile, though considerably faster
than the baseline profile, consumes only siightly more fuel (17 1b) on averge than the baseline does.
Thus, the trade off between time and fuel, so important in airline operations, favors choosing the
nominal profile, However, the profile actually assigned to an aircraft by the air traffic scheduler
will depend on the availability of a conflict-free time slot at the time of descent.

In addition to tests of the tail-wind condition reported herein, head-wind and zero-wind conditions
have recently also been tested. Preliminary analysis is ylelding results that are generally consistent
with the tail-wind conditions., Also, the time variability between the 30-n.mi. point and touchdown was
investigated for both a straight-in and a standard-approach pattern, the latter consisting of downwind,
base, and final segments. Analysis of results for these conditions is still in progress.

Pilots participating in the simulation generally reacted favorably toward the profile-descent
advisory concept, The pilots cited as the primary benefit the accurate specification of the top-of-
descent point in the presence of complex altitude-dependent wind profiles. Moreover, the pilots
considered the advisories as unobtrusive and all profiles as comfortable to fly.

The experience of this study has identified the following three guidelines for achieving accurate
time control. First, descent procedures provided by advisories should be simple to execute and familiar
to pilots. Second, aircraft performance and atmospheric conditions should be accurately represented in
the advisor algorithm. Third, pilots should be briefed on the characteristics of the advisories and the
requirement to execute them accurately.

The time accuracies achieved in the simulation would be adequate for a time-based ATC system if
they could be duplicated in practice. However, uncertainty in the knowledge of the actual wind profile
and inevitable lapses in pilot attention to the profile tracking task will result in larger errors than
obtained in the simulation. One can attempt to estimate such time errors from anmalysis of ATC radar
tracking data during an aircraft's descent. Then, an updated speed advisory can be issued near the
midpoint of the descent to minimize these errors. With the addition of such a midpoint advisory,
control of arrival time within +20 sec appears to be feasible.

Table 3. Summary of simulation results, time (sec) and fuel (1b)
to 30 n.mi. to touchdown point

Time Range of Range of
Predicted by Times; Time Average Fuel Use; Fuel
Type of Profile Algorithm Variability ( ) Fuel Use variability
Baseline
M -0.8/280 KCAS -- 890-1084 1065 945-1145
..o -without profile (196) (200)
.—— . advisories
Nominal
M 0.8/320 KCAS 893 880-915 1082 1064-1098
<+ top of descent: (35) (34)
108 n.mi.
Fast
M 0.84/350 KCAS 863 854-871 1175 1169-1183
top of descent: (17) (14)
107 n. mi.
Slow
230 KCAS 1104 1098-1104 771 764-778
top of descent: (7) (14)

133 n.mi.
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5.  CONCLUDING REMARKS
ing the major performance
leted to date indicate the essential feasibility of achiev
objecissg:c:fc:ng1;e-bas¢d. traffic-management concept. Alr traffic control simulations have i
demonstrated that a time-based system used in conjunction with appropriate procedures, computer aids,
and information displays provides an efficient method for controlling a complex mix of traffic,

including both high- and low-performance aircraft as well as various percentages of 4D-equipped aircraft.

Time control offers significant benefits even at low-percentage mixes of equipped aircraft by using
advisories to help maintain unequipped aircraft on an accurate time schedule. Thus, traffic in the
complex final-control sector flows more orderly and is easier to control when time control methods are
fn use. Although the system operates internally in a time-based mode, controllers need not be aware of
this situation and retain the ability to operate in their traditional distance-spacing mode.

Piloted simulations have demonstrated the effectiveness of profile-descent advisories to control
the descent time of unequipped aircraft, An accuracy at the time-control point of +20 sec, which a
time-based system needs to be effective, appears attainable with the descent advisor designed according
to the methods outlined in the paper.

A combined ATC and piloted-simulation test of the concept is planned for 1987. If these tests
confirm performance predictions, the FAA and NASA plan jointly to conduct operational evaluations of the
concept at the Denver En-Route Air Traffic Control Center.
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